Sains Malaysiana 54(5)(2025): 1357-1373
http://doi.org/10.17576/jsm-2025-5405-13
Penentuan Mekanisme Pendeoksigenan dan Hidropendeoksigenan Asid Laurik menggunakan Mangkin FeMo/AC untuk Penghasilan Biobahan Api Jet
(Determination of the Mechanism of Deoxygenation and Hydropeneoxygenation of Lauric Acid using FeMo/AC Catalyst for Jet Fuel Production)
NURUL ASIKIN-MIJAN1,*,
MEGAN XIN YI RAVINDRAN1, NUR ATHIRAH ADZAHAR2, MUHAMMAD
HASIF AUJI1, ILYA NATASHA MUAALLAMIN1,
ABDULKAREEM-ALSULTAN GHASSAN2, LEE HWEI VOON3, ONG HWAI
CHUAN4, DARFIZZI DERAWI1, MOHD SUFRI MASTULI5 & TENGKU SHARIFAH MARLIZA6
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Pusat Penyelidikan Sains dan Teknologi Katalisis (PutraCat), Faulti Sains, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3 Pusat Penyelidikan Nanoteknologi & Pemangkinan (NanoCat), Institut Pengajian Siswazah, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
4Jabatan Kejuruteraan, Sekolah Kejuruteraan dan Teknologi, Universiti Sunway, No.
5 Jalan Universiti, 47500 Bandar Sunway, Selangor, Malaysia
5Pusat Bahan Berfungsi dan Nanoteknologi, Institut Sains, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
6Jabatan Sains dan Teknologi, Universiti Putra
Malaysia Kampus Bintulu, 97008 Bintulu, Sarawak,
Malaysia
Received: 12 September 2024/Accepted: 15 January
2025
Abstrak
Lonjakan permintaan penggunaan biobahan api jet (BAJ)
dalam industri penerbangan merupakan salah satu alternatif bagi mengurangkan
pelepasan gas karbon dioksida (CO2) kepada alam sekitar.
Malaysia yang kaya dengan sumber kelapa sawit malahan minyak isirung sawit
(PKO) yang mengandungi sebanyak 48% asid laurik (C12) boleh digunakan sebagai
stok suapan bagi penghasilan BAJ. Terdapat dua kaedah yang dapat menukarkan
asid laurik kepada BAJ, iaitu kaedah pendeoksigenan bermangkin (DO) dan hidropendeoksigenan
bermangkin (HDO). DO dapat menukarkan asid laurik kepada BAJ melalui tindak
balas tanpa hidrogen (H2) dengan proses pendekarboksilan/pendekarbonilan
(deCOx) bagi menyingkirkan oksigen dalam menghasilkan rantaian hidrokarbon dan CO2 di samping penghasilan produk sampingan iaitu karbon monoksida, CO dan air (H2O
Manakala HDO pula merupakan kaedah menukarkan
asid laurik kepada BAJ melalui tindak balas penyingkiran oksigen dalam bentuk H2O
dengan kehadiran H2. Dalam kajian ini, kedua-dua kaedah DO dan HDO telah
digunakan bagi penghasilan BAJ dengan menggunakan mangkin FeMo/AC. Mangkin yang
disintesis telah dicirikan dengan menggunakan beberapa kaedah pencirian seperti
XRD, FESEM-EDX, BET, TPD dan VSM. Kesan suhu tindak balas terhadap produk yang
terhasil telah dikaji bagi mendapatkan mekanisme tindak balas bagi kedua-dua
kaedah ini. Produk cecair yang terhasil dicirikan dengan menggunakan GC-FID dan
GC-MS manakala produk gas dicirikan dengan menggunakan GC-TCD. Keputusan kajian
menunjukkan simulasi mekanisme bagi kedua-dua tindak balas DO dan HDO bagi asid laurik dengan menggunakan mangkin FeMo/AC adalah sangat berkesan dengan penghasilan kepelbagaian spesies hidrokarbon.
Kata kunci: Asid laurik; biobahan api jet; hidropendeoksigenan; mangkin; pendeoksigenan
Abstract
The higher demand for the use of bio-jet fuel (BJF) in
the aviation industry is one alternative to reduce carbon dioxide (CO2)
emissions into the environment. Malaysia is rich in palm oil resources and palm
kernel oil (PKO) which contain about 48% lauric acid (C12), can be use as a
feedstock for BJF production. There are two methods to convert lauric acid to
BJF, namely the catalytic deoxygenation (DO) method and the catalytic
hydrodeoxygenation (HDO) method. DO can convert lauric acid to BJF through the
reactions without hydrogen (H2) involving decarboxylation/decarbonylation
(deCOx) processes to remove oxygen, producing hydrocarbon chains and CO2 alongside byproducts such as carbon monoxide (CO) and water (H2O).
Meanwhile, HDO converts lauric acid to BJF by removing oxygen in the form of H2O
in the presence of H2. In this study, both DO and HDO methods were
used to produce BJF using FeMo/AC catalyst. The synthesized catalyst was
characterized using several characterization techniques such as XRD, FESEM-EDX,
BET, TPD, and VSM. The effect of reaction temperature on the resulting products
was studied to determine the reaction mechanisms for both methods. The liquid
products obtained were characterized using GC-FID and GC-MS, while the gas
products were characterized using GC-TCD. The results showed that the simulation
mechanisms for both DO and HDO reactions for lauric acid using FeMo/AC catalyst
is very effective where the reaction producing a variety of hydrocarbon
species.
Keywords: Bio-jet fuel; catalyst; deoxygenation;
hydrodeoxygenation; lauric acid
REFERENCES
Abdulkareem Ghassan Alsultan, Nurul Asikin Mijan, Nasar
Mansir, Siti Zulaika Razali, Robiah Yunus & Yun Hin Taufiq-Yap. 2020.
Combustion and emission performance of CO/NOx/SOx for green diesel blends in a
swirl burner. ACS Omega 6(x): 408-415. https://doi.org/10.1021/acsomega.0c04800
Ady Yulianto, Wega Trisunaryanti, Triyono Triyono, Aldino
Javier Saviola, Karna Wijaya, Indriana Kartini, Suryo Purwono, Rodiansono
Rodiansono & Ady Mara. 2024. Effect of arrangements in an atmospheric
hydrotreating reactor of cobalt and/or molybdenum dispersed on activated carbon
catalysts toward bio-jet fuel production from refined palm oil. Case Studies
in Chemical and Environmental Engineering 10: 100894. https://doi.org/https://doi.org/10.1016/j.cscee.2024.100894
Aliana-Nasharuddin, N., N. Asikin-Mijan, G.
Abdulkareem-Alsultan, Mohd Izham Saiman, Fahad A. Alharthi, Abdulaziz Ali
Alghamdi & Y.H. Taufiq-Yap. 2019. Production of green diesel from catalytic
deoxygenation of chicken fat oil over a series binary metal oxide-supported
MWCNTs. RSC Advances 10(2): 626-642. https://doi.org/10.1039/c9ra08409f
Atthapon Srifa, Kajornsak Faungnawakij, Vorranutch
Itthibenchapong, Nawin Viriya-empikul, Tawatchai Charinpanitkul & Suttichai
Assabumrungrat. 2014. Production of bio-hydrogenated diesel by catalytic
hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresource Technology 158: 81-90. https://doi.org/10.1016/j.biortech.2014.01.100
Bockisch, M. 1998. Chapter 4 - Vegetable fats and oils. Fats
and Oils Handbook. AOCS Press. hlm. 174-344.
https://doi.org/10.1016/b978-0-9818936-0-0.50009-3
Chen, W., Maugé, F., Van Gestel, J., Nie, H., Li, D.
& Long, X. 2013. Effect of modification of the alumina acidity on the
properties of supported Mo and CoMo sulfide catalysts. Journal of Catalysis 304: 47-62. https://doi.org/10.1016/j.jcat.2013.03.004
Dodrill, B.C. 2015. Magnetic Media: Measurements with
a VSM. Westerville: Lake Shore Cryotronics, Inc., No. 614.
Duangporn Premjet, Abraham Kusi Obeng, Hah Young Yoo,
Seung Wook Kim & Siripong Premjet. 2021. Physicochemical characterization
of Jatropha podagrica seed oil for potential biodiesel production and
other industrial applications in Thailand. Sains Malaysiana 50(1):
85-92. https://doi.org/10.17576/jsm-2021-5001-09
Fouad Warid, Ismail Zainol, Nada Mutter Abbass,
Nurulsaidah Rahim & Alhussen Arkan Majhool. 2020. Catalysis deoxygenation
and hydrodeoxygenation of edible and inedible oil to green fuel. Journal of
Advanced Research in Fluid Mechanics and Thermal Sciences 74(2): 146-159.
https://doi.org/10.37934/ARFMTS.74.2.146159
Kallio, P., Pásztor, A., Akhtar, M.K. & Jones, P.R.
2014. Renewable jet fuel. Current Opinion in Biotechnology 26: 50-55.
https://doi.org/10.1016/j.copbio.2013.09.006
Khalil Munawar Makhdum Munawar, Khanom Simarani &
Mohamad Suffian Mohamad Annuar. 2016. Bioconversion of mixed free fatty acids
to poly-3-hydroxyalkanoates by Pseudomonas putida BET001 and modeling of
its fermentation in shake flasks. EJBT 19: 50-55.
https://doi.org/10.1016/j.ejbt.2015.07.005
Kim, T.H., Lee, K., Kim, M.Y., Chang, Y.K. & Choi, M.
2018. Effects of fatty acid compositions on heavy oligomer formation and
catalyst deactivation during deoxygenation of triglycerides. ACS Sustainable
Chemistry and Engineering 6(12): 17168-17177.
https://doi.org/10.1021/acssuschemeng.8b04552
Kunamalla, A. & Maity, S.K. 2023. Production of green
jet fuel from furanics via hydroxyalkylation-alkylation over mesoporous MoO3-ZrO2 and hydrodeoxygenation over Co/γ-Al2O3: Role of calcination
temperature and MoO3 content in MoO3-ZrO2. Fuel 332: 125977.
Lee, K., Kim, M.Y. & Choi, M. 2018. Effects of fatty
acid structures on ketonization selectivity and catalyst deactivation. ACS
Sustainable Chemistry and Engineering 6(10): 13035-13044.
https://doi.org/10.1021/acssuschemeng.8b02576
Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele,
A., Orrù, S. & Buono, P. 2015. Biological and nutritional properties of
palm oil and palmitic acid: Effects on health. Molecules 20(9): 17339-17361.
https://doi.org/10.3390/molecules200917339
Mayorga, M.A., López, M., López, C.A., Bonilla, J.A., Silva,
V., Talero, G.F., Correa, F. & Noriega, M.A. 2020. Production of aviation
biofuel from palm kernel oil. Chemical Engineering Transactions 80: 319-324.
https://doi.org/10.3303/CET2080054
Napat Kaewtrakulchai, Araya Smuthkochorn, Kanit Manatura,
Gasidit Panomsuwan, Masayoshi Fuji & Apiluck Eiad-Ua. 2022. Porous biochar
supported transition metal phosphide catalysts for hydrocracking of palm oil to
bio-jet fuel. Materials 15(19): 6584. https://doi.org/10.3390/ma15196584
Nur Athirah Adzahar, N. Asikin-Mijan, Mohd Izham Saiman,
G. Abdulkareem Alsultan, M. S. Mastuli, Mohd Razali Shamsuddin & Y.H.
Taufiq-Yap. 2022. Chemoselective decarboxylation of ceiba oil to diesel-range
alkanes over a red mud based catalyst under H2-free conditions. RSC
Advances 12(26): 16903-16917. https://doi.org/10.1039/d2ra00853j
Saima Khan, Andrew Ng Kay Lup, Khan Muhammad Qureshi,
Faisal Abnisa, Wan Mohd Ashri Wan Daud & Muhamad Fazly Abdul Patah. 2019. A
review on deoxygenation of triglycerides for jet fuel range hydrocarbons. Journal
of Analytical and Applied Pyrolysis 140: 1-24.
https://doi.org/10.1016/j.jaap.2019.03.005
Songphon Phimsen, Worapon Kiatkittipong, Hiroshi Yamada,
Tomohiko Tagawa, Kunlanan Kiatkittipong, Navadol Laosiripojana & Suttichai
Assabumrungrat. 2016. Oil extracted from spent coffee grounds for
bio-hydrotreated diesel production. Energy Conversion and Management 126: 1028-1036. https://doi.org/10.1016/j.enconman.2016.08.085
Ravindran, M.X.Y., N. Asikin-Mijan, H.C. Ong, Darfizi
Derawi, M.R. Yusof, M.S. Mastuli, H.V. Lee, W.N.A.S. Wan Mahmood, M.S. Razali,
G. Abdulkareem Al-Sultan & Y.H. Taufiq-Yap 2022. Feasibility of advancing
the production of bio-jet fuel via microwave reactor under low reaction temperature. Journal of Analytical and Applied Pyrolysis 168: 105772.
https://doi.org/10.1016/j.jaap.2022.105772
Setareh Monshi Toussi, A. Fakhru’L-Razi, A. Luqman Chuah
& A.R. Suraya. 2011. Effect of synthesis condition on the growth of SWCNTs
via catalytic chemical vapour deposition. Sains Malaysiana 40(3): 197-201.
Suraya Zulkepli, Joon Ching Juan, Hwei Voon Lee, Noor
Saadah Abd Rahman, Pau Loke Show & Eng Poh Ng. 2018. Modified mesoporous
HMS supported Ni for deoxygenation of triolein into hydrocarbon-biofuel
production. Energy Conversion and Management 165: 495-508.
Vorranutch Itthibenchapong, Atthapon Srifa, Rungnapa
Kaewmeesri, Pinit Kidkhunthod & Kajornsak Faungnawakij. 2017. Deoxygenation
of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts. Energy Conversion and Management 134: 188-196.
https://doi.org/10.1016/j.enconman.2016.12.034
Wan Nor Adira Wan Khalit, N. Asikin-Mijan, Tengku
Sharifah Marliza, M. Safa Gamal, Mohd Razali Shamsuddin, Mohd Izham Saiman
& Y.H. Taufiq-Yap. 2021. Catalytic deoxygenation of waste cooking oil
utilizing nickel oxide catalysts over various supports to produce renewable
diesel fuel. Biomass and Bioenergy 154: 106248.
https://doi.org/10.1016/j.biombioe.2021.106248
Wan Nor Adira Wan Khalit, Tengku Sharifah Marliza, N.
Asikin-Mijan, M. Safa Gamal, Mohd Izham Saiman, Mohd Lokman Ibrahim & Y.H.
Taufiq-Yap. 2020. Development of bimetallic nickel-based catalysts supported on
activated carbon for green fuel production. RSC Advances 10(61):
37218-37232. https://doi.org/10.1039/d0ra06302a
Wei, H., Liu, W., Chen, X., Yang, Q., Li, J. & Chen, H.
2019. Renewable bio-jet fuel production for aviation: A review. Fuel 254: 115599. https://doi.org/10.1016/j.fuel.2019.06.007
Wu, J., Shi, J., Fu, J., Leidl, J.A., Hou, Z. & Lu, X.
2016. Catalytic decarboxylation of fatty acids to aviation fuels over nickel
supported on activated carbon. Scientific Reports 6: 1-8.
https://doi.org/10.1038/srep27820
Wu, K., Yao, Q., Wang, D., Huang, H., Lin, J., Fan, Q., Wu,
Y., Duan, J., Zheng, J., Ye, Y., Wang, D., Huang, Y., Jiang, J. & Zheng, Z.
2024. In-situ preparation of MnFeCoNiCu/C for the sustainable
co-production of bio-jet fuel and green diesel under solvent-free and low
hydrogen pressure conditions. Energy Conversion and Management 318: 118875.
https://doi.org/https://doi.org/10.1016/j.enconman.2024.118875
Yang, L. & Carreon, M.A. 2017.
Deoxygenation of palmitic and lauric acids over Pt/ZIF-67 membrane/zeolite 5A
bead catalysts. ACS Applied Materials and Interfaces 9(37): 31993-32000.
https://doi.org/10.1021/acsami.7b11638
Yahsé, R-C., Méndez, F.J., Brito, J.L., González, G.,
Sifontes, Á.B., González, O. & Rojas De Astudillo, L. 2015. Microstructural
study of FeMo/MgO catalysts prepared by sol-gel and co-impregnation and their
relationship with the growth of carbon nanotubes. Diamond and Related
Materials 60: 35-41. https://doi.org/10.1016/j.diamond.2015.10.011
*Corresponding author; email: nurul.asikin@ukm.edu.my
|